
Supplemental Materials: Evolutionary Expansion of DNA
Hypomethylation in the Mammalian Germline Genome

Contents

Supplemental Figures 2

Supplemental Methods 15
Sperm sample collection and library preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Hierarchical clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Orthologous promoter HMR sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Ultra-conserved HMRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Species-specific hypomethylation and methylation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Phylogenetic tree from multiple genome alignment . . . . . . . . . . . . . . . . . . . . . . . . . 16
State space and units of measurement for DNA methylation . . . . . . . . . . . . . . . . . . . . . 16
Phylo-epigenetic model with independent sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Phylo-epigenetic model with interdependent sites . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Model learning and inference for phylo-epigenetic model with interdependent sites . . . . . . . . 22
Sperm methylome evolution at well-conserved elements . . . . . . . . . . . . . . . . . . . . . . . 29
Sperm methylome evolution with mouse as reference species . . . . . . . . . . . . . . . . . . . . 29
Hypomethylation expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Relative sequence substitution rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Enrichment of histone modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Enrichment of transcription factor binding sites . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Gene ontology analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1



Supplemental Figures

2



A

E

−2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Blood
Sperm

4−4

Distance to TSS (kb)

−2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Heart
Sperm

4−4

−2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B Cell
Sperm

4−4

Distance to TSS (kb)

M
et

hy
la

tio
n

−2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ESC
Sperm

4−4

M
et

hl
yl

at
io

n

−2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ESC
Sperm

4−4 −2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PBMC
Sperm

4−4

Distance to TSS (kb)

−2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MDCK
Sperm

4−4

Human Chimp Gorilla Rhesus

Mouse Rat Dog

F

2.5 3.0 3.5 4.0

0.
0

1.
0

2.
0

Orthologous protein-coding gene
TSS-containing HMR size (log10)

D
en

si
ty

human
chimp
gorilla
rhesus

mouse
rat
dog

G

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

Methylation level

Pr
op

or
tio

n

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●
●

●

● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
● ●

●

●

● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
● ●

● ●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ●

●

human
chimp
gorilla
rhesus
mouse
rat
dog

B

0.0 0.4 0.8
0

100

300

200

1.00.60.2

Other statellites

Fr
eq

ue
nc

y

0

10

20

30

0.0 0.4 0.8 1.00.60.2

Pericentromeric
satellite repeats 

Fr
eq

ue
nc

y
Methylation level (dog sperm)

TSS
Other
Repeat

0

25k

50k

75k

N
um

be
r o

f H
M

R
s

in
 n

at
iv

e 
ge

no
m

e

0

25k

50k

N
um

be
r o

f H
M

R
s

 in
 n

at
iv

e 
ge

no
m

e
ov

er
la

pp
in

g 
C

pG
s 

in
 

7-
w

ay
 o

rth
ol

og
ou

s 
ge

no
m

e

human
chimp

gorillarhesus
mouse rat dog

D

C human 
genome

other
repeat
intron repeat
intron non-repeat
exon7-way

Promoter Repeat Other

1.0 0.8 0.6 0.4

rat (1)
rat (2)

mouse (1)
mouse (3)
mouse (2)
mouse (4)

dog (3)
dog (1)
dog (2)

rhesus
gorilla
chimp (1)
chimp (2)

human (2)
human (1)
human (3)
human (4)
human (1)
human (2)
rhesus (1)
rhesus (2)
gorilla
chimp

human
rat

mouse
mouse (1)
mouse (2)

1.0 0.8 0.6 0.4 0.2

rat (1)
rat (2)

mouse (1)
mouse (2)
mouse (3)
mouse (4)

dog (3)
dog (1)
dog (2)

rhesus
gorilla

human (2)
human (1)
human (3)
human (4)
chimp (1)
chimp (2)

human (1)
human (2)
rhesus (1)
rhesus (2)
gorilla
chimp

human
rat

mouse
mouse (1)
mouse (2)

1.0 0.8 0.6 0.4 0.2

mouse (1)
mouse (4)
mouse (2)
mouse (3)

rat (1)
rat (2)

dog (3)
dog (1)
dog (2)

rhesus
gorilla

human (2)
human (1)
human (3)
human (4)
chimp (1)
chimp (2)

human (1)
human (2)
rhesus (1)
rhesus (2)
gorilla
chimp

human
rat

mouse
mouse (1)
mouse (2)

Correlationsperm ESCsomatic

Figure S1: (Caption on next page)



Figure S1: Mammalian sperm methylome characteristics. (A) Distribution of single CpG methylation levels
in each species. CpGs with less than 10x coverage were excluded. Y-axis shows the proportions of CpGs in
25 bins for methylation levels. (B) Distribution of methylation levels at pericentromeric satellites and other
satellites in dog sperm. (C) Genomic context composition of the 7-way orthologous genome in comparison
with the entire human genome. (D) The total number of HMRs in the entire native genomes, and the
number of native HMRs that contain CpGs from the 7-way orthologous genome. (E) Hierarchical clustering
of sperm, ESC and somatic methylomes in different genomic contexts. (F) Average methylation around
TSS that are hypomethylated in sperm and ESC/somatic cells in the native genome of each species; solid
lines represent data smoothed by splines. (G) Log-scale size distribution of TSS-containing sperm HMR for
orthologous protein-coding genes in the native genome of each species. HMRs containing more than one
TSS are excluded.
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Figure S2: Example region in methylome alignment related to Fig. 1D. (A) Zoomed-in browser track image
for dashed-line boxes in Fig. 1D. (B) Mouse-referenced methylome alignment in the orthologous region of
Fig. 1D.
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Figure S3: Modeling methylome evolution reveals overall methylation loss. (A) Total size of species-
specific HMRs and non-HMRs in 6 species, with dog as the out-group species. (B) Schematic presentation
of how the intergeneration inheritance, P , modeled by a continuous time Markov process, and interdepen-
dence of neighboring sites within species, G, modeled by a discrete time Markov chain, are combined. In
the example evolution scenarios from an ancestor species a to a descendant species b, the number of hy-
pomethylated sites in b is the same in all cases, but the probabilities differ in each case under this model. (C)
Empirically determined HMR divergence rates (HMR half-lives) by the fraction of conserved orthologous
HMRs between pairs of species as a function of divergence time in million years. (D) Total size of HMR
gain and loss on individual branches, estimated by the interdependent-site phylo-epigenetic model at sin-
gle CpG resolution. (E) Evolutionary tree and hypomethylation fraction at individual species estimated by
independent-site unrestricted model using discretized methylation states in 200-bp bins with observations
from all 7 species. (F) The unrestricted model (without the reversibility assumption) fits the observed methy-
lation divergence better than assuming reversible state substitution process by Akaike information criterion
(AIC).
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Figure S4: Evolution of sperm DNA methylation in mouse-referenced 7-way orthologous genome. (A) Ge-
nomic context composition of mouse-referenced 7-way orthologous genome. (B) Distribution of single-CpG
methylation levels in sperm for CpG sites in mouse-referenced 7-way orthologous genome. (C) Hierarchical
clustering of species based on correlation of average methylation levels in 200-bp bins. (D) Evolutionary
tree estimated under interdependent-site phylogenetic model. (E) Total size of species-specific hypomethy-
lated and methylated regions. (F) The fraction of 7-way orthologous genome inferred to be hypomethylated
in individual species in the phylogeny.
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Figure S5: Evolution of sperm DNA methylation in placental mammal conserved elements. (A) Genomic
context composition of placental mammal conserved elements. Elements that do not contain CpG sites with
observed data in one or more species are excluded. (B) Distribution of single-CpG methylation levels in
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Figure S9: HMR gains on parallel lineages. (A) Enriched biological processes associated with human-
lineage promoter HMR extensions. (B) Examples of lineage-specific HMR births on parallel lineages lo-
cated in proximity to the same genes.
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Supplemental Methods

Sperm sample collection and library preparation

The gorilla sample was obtained from 43 year old western lowland Gorilla at Zoo Atlanta after review and
approval by the Zoos scientific review committee. The sample was collected opportunistically (cage floor af-
ter animal masturbated) and shipped to San Diego overnight in BWW medium with penicillin/streptomycin.
Two bisulfite-converted libraries were constructed as previously described (Molaro et al. 2011). Paired-end
sequencing was performed on Illumina HiSeq2000 platform (paired-end 76 bp read lengths).

Dog sperm samples were from three individuals, each from a different breed: Doberman, Labrador
retriever and Portuguese water dog. Frozen dog semen samples were collected by Dr. Beckie Williams
at Yorba Regional Animal Hospital, Anaheim, CA. Genomic DNA was extracted from each dog semen
sample using a user-developed protocol (QIAamp DNA Mini kit and QIAamp DNA Blood Mini kit 11/2007,
Isolation of genomic DNA from sperm using the QIAamp DNA Mini kit; protocol 2). Extracted DNA
samples were sent to BGI for bisulfite-conversion, library construction and sequencing. Bisulfite sequencing
libraries were prepared using standard Illumina protocol. Paired-end sequencing was performed on Illumina
HiSeq2000 platform (paired-end 90 bp read lengths).

Genomic DNA from rat sperm (two biological replicates) was extracted according to previously de-
scribed methods (Molaro et al. 2011, 2014). Whole genome bisulfite libraries were constructed using
tagmentation-based methods as previously described (Wang et al. 2013b) with the following modifications:
Transposomes were assembled with Tn5 enzyme purified in house using a plasmid construct kindly provided
by the Sandberg lab and according to protocols previously described (Picelli et al. 2014). Tagmentation of
50ng genomic DNA was performed in Tris-DMF buffer (10 mM Tris-HCl pH 7.5, 5 mM MgCl2, 10%
DMF) at 55◦C for 8 minutes. Reactions were stopped with 0.04% SDS (final concentration) and incubated
for 7 minutes at 55◦C. Samples were incubated with 2ul 10uM replacement oligo Tn5mC-Repl01 at 45◦C
for 10 minutes. Gap repair was performed in T4 DNA Ligase Buffer with 10mM ATP (NEB), 0.1mM each
dNTPs (final concentration), 1ul T4 DNA ligase (400,000 units/mL, NEB) and 1ul T4 DNA polymerase
(3000 units/mL, NEB) and incubated at 37◦C for 15 minutes followed by 25◦C for 10 minutes. Reactions
were heat inactivated at 75◦C for 20 minutes. Bisulfite conversion of DNA was performed using the EZ
DNA Methylation Lightning kit (Zymo cat # D5030) according to the manufacturers recommendations.
After desulphonation and purification of sodium bisulfite treated libraries, samples were amplified for 14-
18 cycles with the Kapa HiFi HotStart Uracil+ Ready Mix according to the manufacturers instructions.
Oligonucleotide sequences are detailed in (Wang et al. 2013b). Each replicate library was barcoded, pooled
and sequenced on 3 lanes of an Illumina HiSeq 2500 (paired-end 100 bp read lengths).

Hierarchical clustering

In the hierarchical clustering analyses of methylomes, we used 1 - Pearson correlation of average DNA
methylation levels in 200-bp genomic bins as pair-wise distance, with complete linkage. The somatic methy-
lomes are from human, chimpanzee and mouse B-cells, gorilla peripheral whole blood, rhesus macaque
PBMC and rat left ventricle.

Orthologous promoter HMR sizes

For each non-human species, annotation of protein-coding genes orthologous to human genes were extracted
using BioMart from Ensembl release 75. HMRs containing a single transcription start site of orthologous
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protein-coding genes were selected from each somatic and sperm methylome. The somatic methylomes
used for this analysis were human B-cell, chimpanzee B-cell, gorilla whole blood, rhesus macaque PBMC,
mouse B-cell, rat left ventricle and dog MDCK cell line. The methylome of dog MDCK cell line con-
tains partially methylated domains (PMDs). We only used dog MDCK HMRs located outside of PMDs to
measure promoter HMR size.

Ultra-conserved HMRs

We defined core HMRs as the intersection of sperm HMRs from all seven species. Sperm HMRs from all
species that overlapped with a same core HMR were merged into a single region, which we call conserved
HMR. The ratio between the core HMR size and the corresponding conserved HMR size is a measurement
of the local conservation of DNA methylation pattern. We chose a lower cutoff at 0.7 for definition of
ultra-conserved HMR, which resulted in 250 regions. A more stringent cutoff 0.8 resulted in 42 regions.
We used GOrilla (Eden et al. 2009) to identify enriched biological processes, molecular functions and
cellular components in the target set of genes whose TSS are located within the ultra-conserved HMRs, in
contrast with a background gene set, which are genes with TSS hypomethylated in the sperm of all seven
species. Enriched GO terms with p-value < 1× 10−3 are reported in Supplemental Table S6.

Species-specific hypomethylation and methylation

We used HMRs from individual methylomes (aligned to reference genome) to determine species-specific
hypomethylated regions and species-specific methylated regions (Supplemental Fig. S3A, S4D, S5D). As
an alternative, we also used methylation level cutoffs to determine methylation states and species-specific
methylation patterns. Average methylation levels in each species were measured in 200-bp bins along the
hg19 genome. Bins with methylation level less than a threshold were considered hypomethylated, and
methylated otherwise (Supplemental Table S7).

Phylogenetic tree from multiple genome alignment

We estimated the phylogenetic tree branch lengths under the unrestricted single-nucleotide model (Yang
1994), using the R package RPHAST (Hubisz et al. 2011). Multiple genome alignment of the seven species
in this study was extracted from the multiple alignments of 99 vertebrate genomes with human genome
(hg19/GRCh37, Feb. 2009) (Blanchette et al. 2004) downloaded from UCSC Genome Browser. Phyloge-
netic tree was estimated independently from alignments in different autosomes. The results were very stable
across chromosomes. The average branch lengths were used as the final branch lengths for the phylogenetic
tree for the entire orthologous genome across the seven species.

State space and units of measurement for DNA methylation

DNA methylation is often discussed in terms of levels at individual CpG sites, and the level reflects the
fraction of cells that have the discrete methyl mark at that site (more accurately molecules with the mark, in
the case of non-haploid cells). In multiple studies since 2009, when considering cells that are relatively pure
in terms of phenotype, the methylation levels have been observed to fall into two categories: high and low
levels. This is seen in the global bimodal distribution of methylation levels, and when one observes profiles
of DNA methylation in a genome browser. There are special cases of intermediate methylation levels, for
example cancers have large domains of partial methylation. In addition, imprinted loci have intermediate
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methylation (one allele methylated through an imprinting control region in most somatic cells). However, for
the vast majority of the sites, major phenotypic differences among healthy cells usually involve methylation
changing from low to high, or from high to low. For this reason, all our modeling is in terms of low and
high methylation states, and we use the corresponding state space {0, 1}. This allows for a distribution of
the observed levels associated with the “low” methylation state, and another distribution for the observed
levels at sites occupied by the “high” state.

Although this restriction to a discrete state space is justified, our modeling approach still allows for an
interpretation that is consistent with the fact that methylation is usually measured as levels between 0 and
1. In our modeling we ultimately make use of probabilities over the state space, which behave very much
like a continuous level. Given a probability for a site occupying a “high” methylation state, the expected
methylation level can be obtained by using that probability as the weight in a convex combination of the
expected methylation levels associated with the high and low states. At the same time, the discrete state
space is highly convenient, and the preponderance of evidence indicates that in most cases the state carries
almost the same information as the level (and may be more robust to artifacts, noise and sampling error).

Phylo-epigenetic model with independent sites

Our goal is to model the evolution of DNA methylation states in multiple extant species with a common
ancestor. We first focus on a single-site to derive the likelihood function, and then extend the model to
multiple sites but for which epigenomic evolution is assumed to be independent.

We assume that the methylation state at a single CpG site evolves according to a two-state continuous-
time Markov process. Let π = (π0, π1) be the initial distribution of the methylation state at the root node,
and let the transition rate matrix be

Q =

[
−λ λ
η −η

]
.

The transition probability matrix between two time points separated by time interval of length ` is P (`) =
exp(Q`), where

exp(Q`) =

∞∑
k=0

1

k!
`kQk

is the matrix exponential. P (`) is determined by two terms (`(λ + η), λ/η). Let λ + η = 1, so that the
mutation rate and branch length parameters are identifiable.

Let τ = {V, E} be the phylogenetic tree with known topology and unknown branch lengths, where V is
the set of known vertices and E is the set of branches with unknown lengths. The model parameter space is
thus

Θ = {τ, π,Q}.

Model inference with complete leaf observation With complete observations at leaf nodes, we use max-
imum likelihood method to estimate model parameters. Before writing out the observed data likelihood,
we require some notation for representing nodes and their relationships in the tree. We use r to denote the
root node of the phylogenetic tree, and use u, v and c to denote 3 consecutive nodes on a lineage, such that
(u, v) ∈ E and (v, c) ∈ E . Let `v be the length of edge (u, v) ∈ E . Each node u ∈ V is associated with
a random variable for methylation state. For simplicity of notation, we also use u to denote this random
variable. We use j and k to denote methylation states, j, k ∈ {0, 1}. In general, for a parent-child pair,
we associate j with the parent, and k with the child. We use L to denote the set of all leaf nodes, I for all
internal nodes, and therefore V = I ∪L. Let random variable Y be the methylation states at all nodes in the
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tree, Z be the states at all internal nodes, and X be the states at all leaf nodes. We use X(u) to denote the
set of methylation states at leaf nodes that are descendants of u, and it follows that X(r) = X .

For node v, given that its parent u has methylation state j, the conditional probability of observing states
X(v) at terminal descendants of node v is

pj(v) = Pr(X(v)|u = j,Θ).

For notational convenience we define

qk(v) =

{
Pr(v = k) if v is a leaf node,∏
c∈child(v) pk(c) otherwise,

where Pr(v = k) ∈ {0, 1} when a binary methylation state is observed, and Pr(v = k) ∈ (0, 1) when the
observed data are continuous levels representing a probability distribution over the state space.

We can then write the probability pj(v) as the recurrence

pj(v) =
∑
k

(
P (`v)jk × qk(v)

)
. (S1)

The likelihood of the observed data for a single site is then

L(Θ|X) = Pr(X(r)|Θ) =
∑

j∈{0,1}

πjpj(r).

The recurrence in (S1) is the basis of Felsenstein’s pruning algorithm for efficiently computing the likelihood
of a tree topology, branch lengths and transition rate, given data at leaf nodes (Felsenstein 1981).

Moving from single site to multiple sites, let N be the total number of sites in the methylome. Let Xn,
for 1 ≤ n ≤ N , be the set of methylation states associated with all leaf nodes at site n. The variables
X = X1, . . . , XN denote the observed methylation states at all leaf nodes. Under the assumption that
methylation states at distinct sites evolve independently, the likelihood for observed data at multiple sites is

L(Θ|X) =
∏N
n=1L(Θ|Xn).

The likelihood and partial derivatives are recursively computed in the same spirit of the pruning al-
gorithm (Felsenstein 1981). In our implementation, we optimize parameters using gradient ascent, and can
accurately estimate model parameters in simulated datasets. With the maximum likelihood estimates (MLE)
of model parameters, we then compute the joint and marginal posterior probabilities of the states at internal
nodes at each site. This can be achieved through a dynamic programming algorithm with time complexity
linear to the number of nodes in the tree (Pupko et al. 2000).

Estimating transition rates and branch lengths under can be done with existing software, such as the
RPHAST R package (Hubisz et al. 2011). However, to estimate methylation probabilities at ancestral species
in the phylogenetic tree, we implemented this independent-site model in our Epiphyte package.

Phylo-epigenetic model with interdependent sites

In this section, we first introduce our model for epigenome evolution with dependence between neighboring
sites. Then, we discuss its relationship with alternative models for epigenome evolution, including the
context-dependent model introduced for DNA/RNA sequence evolution (Siepel & Haussler 2004), and an
ideal graphical model for epigenome evolution.
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Phylo-eipgenetic model with interdependent sites We develop a model to allow for two processes that
jointly describe the observed mammalian methylome: one is the process of methylation state inheritance
from ancestral species, and the other is the process governing the correlation observed between methylation
states at neighboring sites within a species. As in the independent-site model, we use τ = {V, E} to
denote the phylogenetic tree relating extant species, with known topology and unknown branch lengths.
The inheritance process is defined by Q, as previously introduced. At the root species, the dependence
between neighboring CpG sites is described with a discrete-time Markov chain over the state space {0, 1},
where the time points correspond to CpG sites in the genome. Let the initial distribution be π in the root
species. Let the transition probability matrix between neighboring CpG sites of the root species be

F =

[
f0 1− f0

1− f1 f1

]
.

In non-root species, we also use a transition probability matrix to describe the autocorrelation relationship
of CpGs within individual methylomes. The transition probability matrix

G =

[
g0 1− g0

1− g1 g1

]

is assumed to be homogeneous in all non-root species. We use different horizontal transition probability
matrices for the root species and non-root species because the horizontal process at non-root species interacts
with the vertical inheritance process to determine the genomic distribution of methylation states, while the
the horizontal process at root species alone determines the methylation states in the genome. The model
parameter space is now

Θ = {τ, π,Q, F,G}.

We assume the CpG sites are ordered from 1 to N by their position within the reference human genome,
ignoring chromosome boundaries for simplicity. Consider two neighboring CpG sites n−1 and n (1 < n ≤
N ) and a branch (u, v) ∈ E in the phylogenetic tree, with u being the parent of v. Let random variable vn
denote the methylation state of site n in species v. We assume the conditional probability of methylation
state k is proportional to GikP (`v)jk, and thus define the conditional distribution of vn, given the previous
site’s state vn−1 and its ancestral state un, as:

pv(i, j, k) = Pr(vn = k|vn−1 = i, un = j)

=
GikP (`v)jk∑

k′=0,1Gik′P (`v)jk′
, where i, j, k ∈ {0, 1} and 1 < n ≤ N. (S2)

This conditional probability distribution models the majority of sites, but there are important special cases:
(i) the states of all nodes at position n = 1, and (ii) the states of all sites at the root node r. For sites at position
n = 1, the methylation state evolution is described by the initial distribution π, the continuous-time Markov
process with transition rate matrix Q, and the branch lengths in the phylogenetic tree τ . The methylome of
the root species is modeled only with the discrete-time Markov chain F and the initial distribution π.

The parameter interpretations of Q and branch lengths under the independent-site model can not be
applied to the interdependent-site model. To scale branch lengths to have unit length represent approximately
1 expected methylation state change, we compute a scaling factor in the following way. Given the model
parameters, the methylation probability averaged along the whole methylome of the LCA is p1 = (1 −
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Figure S10: Graphical models for epigenome evolution and main factors in probability mass function fac-
torization. Species a is the parent of species b in the phylogenetic tree. Circles represent methylation states
at individual sites of individual species. Triangles represent tree-wise methylation states at individual sites.
Vertex set xi contains all vertices at site i. In the chain graph model, xa, xb are the vertex sets corresponding
to the chain components for species a and b, containing all sites in each species.

f0)/(2 − f0 − f1). The expected frequency of two neighboring sites having both hypomethylated states
is p00 = (1 − p1)f0, both methylated states p11 = p1 · f1, and different methylation states p01 = p10 =
(1− p1) · (1− f0). We construct a scaling factor:

β = p00 ·
1− g0
g0

· λ+ p10 ·
g1

1− g1
· λ+ p01 ·

g0
1− g0

· (1− λ) + p11 ·
1− g0
g1

· (1− λ).

Multiplying β with raw branch lengths approximately scales the unit length to represent 1 expected methy-
lation state change per site.

Alternative models for epigenome evolution To model epigenome evolution, the independent-site as-
sumption needs to be relaxed because of the well characterized autocorrelation of epigenetic marks, es-
pecially when modeling at high-resolution, focusing on individual sites. Introducing dependence between
neighboring sites as we described above is a major improvement over independent-site models. It not only
captures the biological autocorrelation, also permits effective means of solving the missing data problem
due to the substantial divergence of CpG sites between species.

In the context of genome evolution, sequence context-dependent mutation rates have been incorporated
to extend the standard phylogenetic models. The standard phylogenetic model and many of its extensions
can be considered as graphical models. Siepel & Haussler (2004) introduced a context-dependent phyloge-
netic model to allow mutation rates to vary depending on the identity of neighboring nucleotides. This model
is equivalent to a Bayesian network where factors in the density function are conditional probabilities of a
descendant site given its parent site, previous parent site and its previous site (Figure S10B). The conditional
distributions are derived from a continuous-time Markov model for dinucleotide evolution. Computing the
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data likelihood of observations at leaf species of the phylogenetic tree is intractable. Several approximation
methods have been applied (Jensen & Pedersen 2000; Lunter & Hein 2004; Siepel & Haussler 2004; Jojic
et al. 2004). For example, Siepel & Haussler (2004) originally ignored the dependencies between ancestral
states of neighboring sites and simplified likelihood computation to that of an (k-1)st order Markov chain
for sequences in extant species when the substitution process is jointly modeled for k-tuples; Jojic et al.
(2004) used structured variational methods to approximate the data-likelihood, and showed that preserving
the phylogenetic tree structure at individual sites provides a better approximation.

Our model for methylome evolution also defines a Bayesian network, where vertical edges exist between
a site in one species and the homologous site in the parent species, and describe the causal relationship
between ancestor and descendant methylation states. Inter-site dependence is modeled with directed edges
between neighboring sites within the same species. The probability mass function can be factorized into
conditional probabilities of a descendant site given its previous site and its ancestral site (Figure S10A).
Our formulation of the conditional probability distribution offers flexibility at combining the horizontal
dependence and vertical inheritance relationships. For example, when g0 = g1 = 0.5, the methylation state
evolution processes at different sites are independent, while the states at neighboring sites in a non-root
species are still correlated as a result of the correlation of the homologous sites in the root species. When
the rows of F are the initial distribution π, in addition to g0 = g1 = 0.5, this special case is equivalent to
the independent-site model. Potential extensions can be made to the modeling of horizontal processes to
capture more characteristics of the methylome and its evolution dynamics, which we did not pursue in this
study. For example, the horizontal process can be modeled with a continuous time Markov chain to capture
the inverse-relationship between pair-wise methylation state correlation and inter-site distance. In addition,
different horizontal processes can be assumed for individual non-root species to capture lineage-specific
property of local correlation.

Both of these two Bayesian network models are special cases of a general Markov model for transitions
between neighboring sites over tree-wise epigenomic states (Figure S10C). The transition probability be-
tween tree states can be expressed by the product of local conditional probabilities at individual nodes of
the phylogenetic tree. Compared with a general Markov model, these two Bayesian network models are ex-
pressive of the phylogenetic relationship between species and dramatically reduce the number of parameters
involved in the tree-state transition probabilities from O(22|V|) to O(|V|).

Ideally, the epigenome evolution can be modeled with a chain graph (Lauritzen 1996). Each node in the
graph corresponds to the methylation state of a site in a species. Undirected edges exist between neighboring
sites within the same species to describe the autocorrelation of methylation states. Directed edges link each
site in each internal species to its descendants in the child species, and describe the causal relationship
between parent and descendant sites. A generative model for such a chain-graph structure would involve
dynamic processes that generate samples iteratively until convergence to some kind of equilibrium. In the
context of modeling epigenome evolution, for example, this equilibrium may be measured by the distribution
of the number and sizes of HMRs. This iterative dynamic process allows a descendant site to see past
the immediate neighboring sites and its direct parent site in the chain graph and incorporate information
from much wider range of sites in both the parent species and the descendant species. Compared with the
generative process for Bayesian network models based on conditional probabilities, a generated chain-graph
sample is a more realistic picture of epigenome evolution. However, factorization of a probability function
on this graph involves potentials over all complete subsets of the complete graph induced by all nodes in a
chain component (Lauritzen 1996). In contrast with Bayesian network models, even computing complete
data likelihood for this chain-graph is intractable because each chain component may inflict state space of
size exponential to the number of sites in the genome.
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Model learning and inference for phylo-epigenetic model with interdependent sites

Complete data likelihood and sufficient statistics Assume the complete-data Y – methylation states at
every site n ∈ {1, . . . , N} and in every species v ∈ V – are observed, including ancestral species. For
convenience below we will use the symbol vn, which we previously defined as a random variable, to denote
the observed state of that variable. With model parameters Θ, the complete data likelihood is

L(Θ|Y ) = Pr(Y |Θ) = Pr(Y1|Θ)

N∏
n=2

Frn−1rn

∏
u∈I

∏
v∈child(u)

pv(vn−1, un, vn).

With u denoting the parent of v and r denoting the root, we define the following:

wj = 1{r1 = j} (corresponds to site 1 in root species)

wjk(v) = 1{un = j, vn = k} (site 1 in non-root species)

wik =
∑N

n=21{rn−1 = i, rn = k} (remaining root sites)

wijk(v) =
∑N

n=21{vn−1 = i, un = j, vn = k} (all other sites)

(S3)

The log-likelihood can then be written as

logL(Θ|Y ) =∑
v=r

j∈{0,1}

wj log πj +
∑
v 6=r

j,k∈{0,1}

wjk(v) logP (`v)jk +
∑

i,k∈{0,1}

wik logFik +
∑
v 6=r

i,j,k∈{0,1}

wijk(v) log pv(i, j, k). (S4)

Therefore, the following are sufficient statistics for our model parameters:

W =
{
wj , wik, wjk(v), wijk(v) : i, j, k ∈ {0, 1}, v ∈ V \ {r}

}
.

Among these statistics, {wijk} represent the vast majority of information from the data, while {wj} and
{wjk} carry negligible information. Under complete data, we can use these sufficient statistics to efficiently
compute the MLE for model parameters by numerical methods. As with the independent-site model, our
implementation also uses gradient ascent to arrive at the MLE of parameters in the interdependent-site
model.

Learning model with EM algorithm from incomplete data In reality, observations about DNA methy-
lation states are only available at a subset of sites in extant species. Given the model parameter θ and
observed states X , we can obtain expected values of the sufficient statistics EZ|X,θW . Given the sufficient
statistics in (S3), we can derive the MLE of model parameters by maximizing the complete-data likelihood
in (S4). These two processes are exactly the two steps in an expectation-maximization (EM) algorithm. In
the expectation (E) step, we compute Q(θ|θ(t)), which is defined as the expected value of the complete-data
log-likelihood logL(θ|X,Z) with respect to the unknown data Z given the observed data X and parameter
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estimates θ(t):

Q(θ|θ(t)) = EZ|X,θ(t) logL(θ|X,Z) =

∑
v=r

j∈{0,1}

E(wj |X, θ(t)) log πj +
∑
v 6=r

j,k∈{0,1}

E(wjk(v)|X, θ(t)) logP (`v)jk +

∑
i,k∈{0,1}

E(wik|X, θ(t)) logFik +
∑
v 6=r

i,j,k∈{0,1}

E(wijk(v)|X, θ(t)) log pv(i, j, k).

(S5)

The E-step is equivalent to computing the expected value of W |X, θ(t) as explained below. The maximiza-
tion (M) step can be expressed as:

θ(t+1) = arg min
θ
Q(θ|θ(t)).

E-step and Markov chain Monte Carlo approximation In the E-step, we use Markov chain Monte
Carlo (MCMC), specifically Gibbs sampling, to estimate the expectation of the sufficient statistics given the
model parameters and observations at leaf nodes. Recall that we used Z to denote (unobserved) methylation
states at internal nodes in previous sections, and assumed that observation at leaf nodes are complete. Here
we describe the algorithm for a more general situation, where observations at a number of leaf nodes may
be missing at a number of sites. Hereafter, we use Z to denote the methylation states that are not observed,
including those at all internal species and any leaf species with missing data at some sites. We use X
to denote all the observed methylation states, which must come from leaf nodes. We apply MCMC to
approximate the conditional distribution of Pr(Z|X, θ). Let Z(t) be the tth sample in the chain. Let MB(v)
be the Markov blanket of node v in the Bayesian network. Given the states of all variables in MB(v) as b,
the conditional distribution Pr(v = i|MB(v) = b) can be computed easily (see Table S14).

Let MB(v, t) denote the states of nodes in MB(v) in Z(t). The sampling procedure for Z(t) is as follows:

1. Draw a starting sample Z(t=0), which is a specific initiation of the states for all nodes with unobserved
methylation states.

2. For t = 1, 2, . . . :
Iterate over all sites from site 1 to site N . At each site, iterate over the nodes of the phylogenetic tree
according to a post-order traversal. If the node has an unobserved methylation state z ∈ Z:

(a) Make a proposal to change the state of z to: zprop = 1− z(t−1).
(b) Accept the proposal z(t) = zprop with probability

α = Pr(zprop|MB(z, t− 1)).

(c) If the proposal is rejected, let z(t) = z(t−1).

The chain {Z(t)} is positive recurrent and aperiodic on a finite state space. It follows that the chain is
uniformly ergodic (Roberts & Polson 1994). The same are true for the chain of sample statistics {W (t)}
derived from {Z(t)}. Theories about MCMC (Theorem 3.1 of Gilks et al. (1995)) guarantees that

Pr

(
1

T

T∑
t=1

W (t) → EZ|X,θW

)
= 1.
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Our goal in the E-step is to approximate EZ|X,θW using MCMC samples. For any scalar sample statistic
w ∈W , the output from MCMC is summarized in terms of ergodic averages of the form

w̄t =

∑t
i=1w

(i)

t
.

The Markov chain central limit theorem states that
√
t(w̄t − EZ|X,θ[w])

d−→ N(0, σ2w), as t→∞,

where σw is a constant given X and θ. Given an estimate of σw, we can form a confidence interval for
EZ|X,θ[w], and continue sampling until the confidence interval is sufficiently small. We adopt a fixed-width
stopping rule for the Markov chain based on a consistent batch means method, i.e. the CBM method referred
to by Jones et al. (2006). In each E-step, let t be the current chain length. Let the batch size bt, and batch
number at be functions of t:

bt =
⌊
t
1
2

⌋
, at = bt/btc .

Let w̄j be the mean of the jth batch:

w̄j =
1

bt

jbt∑
i=(j−1)bt+1

w(i), for j = 1, . . . , at.

The CBM estimate of σ2w is

σ̂2w,CBM =
bt

at − 1

at∑
j=1

(w̄j − w̄t)2.

We stop sampling the first time that

t?
σ̂w,CBM√

t
+ p(t) < ε, for all w ∈W,

where t? is the appropriate quantile of Student’s t-distribution with at − 1 degree of freedom, and p(t) =
ε × 1{t ≤ tmin}, where tmin is a minimum sampling effort (for example 100). In our implementation, we
chose ε = N/104 as the half 95%-confidence interval width cutoff. Then, EZ|X,θ(t)W is approximated with
the sample average of the second half of the chain, which we denote with W̃ .

M-step Let Q̃(θ|θ(t)) be an approximation to Q(θ|θ(t)) with EZ|X,θ(t)W substituted by the MCMC ap-
proximation W̃ . We use gradient ascent to maximize

Q̃(θ|θ(t)) =
∑
v=r

j∈{0,1}

w̃j log πj +
∑
v 6=r

j,k∈{0,1}

w̃jk(v) logP (`v)jk +

∑
i,k∈{0,1}

w̃ik logFik +
∑
v 6=r

i,j,k∈{0,1}

w̃ijk(v) log pv(i, j, k).

Partial derivatives required for parameter optimization are shown in Table S15.
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Summary of model inference procedure Together, the procedure for model parameter estimation and
ancestral state reconstruction is summarized as below:

1. Choose start point for model parameters θ(t).

2. Iterate the following EM procedure

• E-step: Use Gibbs sampling to approximate EZ|X,θ(t)W .

• M-step: update model parameters to θ(t+1).

until convergence: ‖θ(t+1) − θ(t)‖ < ε.

3. Given the final model parameter estimates, generate MCMC samples as in the E-step. After discarding
the first half of samples, construct marginal posterior distribution with the second half of samples at
individual sites. Use the MAP estimates as the methylation states at individual sites.

Application on methylome data The input data for a single-CpG resolution phylo-epigenetic model are
the posterior methylation probabilities at individual CpG sites, which were estimated in their native genome
with the hmr program in MethPipe package (Song et al. 2013).

We applied the interdependent-site phylo-epigenetic model on sperm methylomes of the seven species
at single CpG resolution. Sites in species without observed data were treated as missing data. We separated
the orthologous methylome into 30 equal-sized regions, and estimated parameters from individual genomic
fragment with the epiphy-est program inside our Epiphyte package. The estimated parameters are
stable across different genomic fragments. The median of parameter estimates are reported in Supplemental
Table S8, and the scaled evolutionary tree for methylomes is shown in Fig. 2A. We estimated that g0 =
0.99 > g1 = 0.89, which indicates a stronger force to maintain consecutive hypomethylated sites than
consecutive methylated sites.

We also applied the independent-site model at single CpG resolution after imputing methylation prob-
abilities at most sites with missing data, to provide extra validation for the expansion of hypomethylation
fraction. Sites in species without observed data were interpolated with the average methylation probabili-
ties at the two closest (within 1 kbp distance up and downstream) observed sites if the two sites belong to
the same HMR or nonHMR in native genome, and treated as missing data otherwise. Although the data
interpolation step violates the independent site assumption, it is a reasonable step because of the empirically
observed spatial correlation of methylation states in the genome. The model is estimated with epiphy-est
program with option -d 0, which sets CpG desert size cut off at 0 and effectively treats all sites as evolv-
ing independently. Estimated model parameters are shown in Supplemental Table S8. The fraction of sites
hypomethylated was estimated to be 13.6% for the LCA, while it is between 15.6-19.6% for extant species.

The inference step estimates the posterior methylation probabilities at unobserved sites, and can be sep-
arated from model learning. We can estimate ancestral methylation probabilities using the MCMC sampling
method as described above, with any given set of parameters for the interdependent-site phylo-epigenetic
model. With the posterior probabilities, we identified hypomethylated regions in ancestral methylomes by
collapsing neighboring sites with less than 0.5 posterior methylation probability. We observed that methy-
lation states inferred using parameter estimates from the interdependent-site model are not parsimonious in
some cases. Although parsimony reconstruction of ancestral states may not be the most likely reconstruc-
tion under a likelihood-based method, we tried to reach a balance between these two. We keep the root
horizontal parameters F estimated by the interdependent-site model, and fixed the phylogenetic tree branch
lengths and methylation mutation rate parameters to the values estimated by the independent-site model.
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The descendant horizontal process parameters estimated by the interdependent-site model are g0 = 0.99
and g1 = 0.89. We experimented with different values within this range (0.89, 0.99), and chose 0.95 as
the value for both g0 and g1, so that the ancestral methylation state estimates are parsimonious given the
input extant species methylation states showing clade-specific methylation patterns. Hypomethylated re-
gions in ancestral species, as well as all types of methylation evolution events were identified based on the
posterior methylation probabilities estimated in this parameter setting with programs epiphy-post and
epiphy-seg.
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If the current node v = r is the root:

n = 1 MB(vn) = {cn : c ∈ child(v)} ∪ {vn+1}
Pr(vn = i|b) ∝

∏
c∈child(v) Pr(cn|vn = i)

n = N MB(vn) = {cn−1, cn : c ∈ child(v)} ∪ {vn−1}
Pr(vn = i|b) ∝ Pr(vn = i|vn−1)

∏
c∈child(v) pc(cn−1, i, cn)

1 < n < N MB(vn) = {cn−1, cn : c ∈ child(v)} ∪ {vn−1, vn+1}
Pr(vn = i|b) ∝ Pr(vn = i|vn−1) Pr(vn+1|vn = i)

∏
c∈child(v) pc(cn−1, i, cn)

If the current node v ∈ L is a leaf:

n = 1 MB(vn) = {vn+1} ∪ {un, un+1}
Pr(vn = i|b) ∝ Pr(vn = i|un)pv(i, un+1, vn+1)

n = N MB(vn) = {vn−1} ∪ {un}
Pr(vn = i|b) ∝ pv(vn−1, un, i)

1 < n < N MB(vn) = {vn−1, vn+1} ∪ {un, un+1}
Pr(vn = i|b) ∝ pv(vn−1, un, i)pv(i, un+1, vn+1)

If the current node v /∈ L ∪ {r} is internal:

n = 1 MB(vn) = {cn : c ∈ child(v)} ∪ {vn+1} ∪ {un, un+1}
Pr(vn = i|b) ∝ Pr(vn = i|un)pv(i, un+1, vn+1)

∏
c∈child(v) Pr(cn = i|vn = u)

n = N MB(vn) = {cn, cn−1 : c ∈ child(v)} ∪ {vn−1} ∪ {un}
pb(vn) = pvn−1pun

∏
c∈child(v) pcn−1pcn

Pr(vn = i|b) ∝ pv(vn−1, un, i)
∏
c∈child(v) pc(cn−1, i, cn)

1 < n < N MB(vn) = {cn, cn−1 : c ∈ child(v)} ∪ {vn−1, vn+1} ∪ {un, un+1}
Pr(vn = i|b) ∝ pv(vn−1, un, i)pv(i, un+1, vn+1)

∏
c∈child(v) pc(cn−1, i, cn)

Table S14: The Markov blanket and probabilities involved in MCMC sampling procedure. These are broken
down for each of the 9 separate cases involving combinations of {root, leaf, internal} nodes and {first,
internal, last} sites. In each expression where it appears, i ∈ {0, 1} is the methylation state of vn, b ∈ B(vn)
is the joint state set for MB(vn), the indicated Markov blanket. In our notation, the node u is the parent of
node v.
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∂Q̃

∂π0
=

w̃0

π0
− w̃1

1− π0
∂Q̃

∂fi
=

w̃ii
fi
−
w̃i(1−i)

1− fi
, i = 0, 1

∂Q̃

∂gi
=

∑
v 6=r

j,k∈{0,1}

w̃ijk(v)

{
(−1)k

Gik
−
∑

k′∈{0,1}(−1)k
′
P (`v)jk′∑

k′∈{0,1}Gik′P (`v)jk′

}
, i = 0, 1

∂Q̃

∂λ
=

∑
v 6=r

j,k∈{0,1}

w̃jk(v)
(−1)1−kTv
P (`v)jk

+

∑
v 6=r

i,j,k∈{0,1}

w̃ijk(v)Tv

{
(−1)1−k

P (`v)jk
−
∑

k′∈{0,1}Gik′(−1)1−k
′∑

k′∈{0,1}Gik′P (`v)jk′

}

∂Q̃

∂Tv
=

∑
v 6=r

j,k∈{0,1}

w̃jk(v)
λ1−j(λ− 1)j(−1)1−k

P (lv)jk
+

∑
v 6=r

i,j,k∈{0,1}

w̃ijk(v)λ1−j(λ− 1)j

(−1)1−k

P (lv)jk
−

∑
k′∈{0,1}

Gik′(−1)1−k
′

∑
k′∈{0,1}

Gik′P (`v)jk′

 ,

where Tv = 1− exp(−lv), v ∈ V \ {r}

Table S15: Partial derivatives with respect to model parameters required in the maximization step of EM
algorithm (Section ).
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Sperm methylome evolution at well-conserved elements

The placental mammal conserved elements (Siepel et al. 2005) are highly fragmented, with median region
size 16 bp, and a substantial fraction (70%) of these elements do not contain any CpG sites from the 7-way
orthologous genome. We restricted analysis to the 369,007 placental mammal conserved elements with total
size 25.7 Mbp that have observed methylation data from all seven species, and applied our interdependent-
site phylo-epigenetic model (Supplemental Table S8).

Sperm methylome evolution with mouse as reference species

We examined the impact of choice of reference genome on phylo-epigenetic analyses by using mouse as the
reference species. We used multiple genome alignment of 59 vertebrate genomes with mouse (Blanchette et
al. 2004) (available from UCSC Genome Browser) to map CpG locations in the other 6 sperm methylomes
onto the mouse mm10 reference genome, following the same procedure described for human-referenced
alignment. The resulting 7-way orthologous regions have a total size of 277 Mbp in the mouse mm10
reference genome.

Hypomethylation expansion

The trends we observe are genome-wide averages, and although we attempted to analyze specific sequence
changes associated with widening, we have so far not seen any obvious connections with specific types of
sequence changes (other than what we have already described). If we focus on individual examples, we
can find some where a progressive expansion seems to be taking place along an individual lineage. Our
modeling suggests the existence of HMRs that have widened on parallel lineages. But when we examine
any individual HMR in most cases we do not have enough information (without many additional species)
to distinguish parallel widening vs. ancestral widening or contraction along another lineage. We can only
speak to the averages indicated by our modeling and our supporting analyses (e.g. Figure 3A). We favor the
view that any individual HMR almost certainly has a “stable” size for most of its evolution, with widening
likely the result of discrete evolutionary events. Any events that would have made an HMR more narrow
seem to be comparatively rare. This leads to widening of HMRs on average (a) over the genome, (b) across
lineages, and (c) over time. Although we can detect and measure these averages, isolating the individual
events is more difficult and will require more data.

The sizes of newly arising HMRs can give insight on the birth size and expansion rate. The difference
in discernible age matters when we consider the size distribution of HMRs. For example, the HMR births
inferred on the human branch formed after the human-chimp divergence, and the mouse HMR births formed
after the mouse-rat divergence. These two categories of HMR birth events represent different average ages
of hypomethylation. The size of an observed HMR birth contains the initial size at birth and subsequent
expansion in that species. We compared the size distribution of HMR birth events on the human branch
and on the mouse branch. The size of HMR births ranges from hundreds of bases to thousands of bases for
both human (standard deviation 372 bp) and mouse (standard deviation 415 bp). Although the average or
median mouse HMR birth size is only larger than that of human by 10-30 bp, the difference between two
distributions are significant (single-sided Wilcoxon ranksum test p = 1.11 × 10−8). We examined HMR
births in chimp and rat as well. The HMR birth sizes in mouse or rat are significantly larger than those
in human and chimp. Increasing the species sampling density in the phylogenetic tree to represent more
species divergence events along a single lineage will help calibrate HMR expansion rates along individual
lineages.
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Bisulfite sequencing does not distinguish between methylation (5mC) and hydroxymethylation (5hmC)
(Jin et al. 2010). Divergent 5hmC levels could lead to observed methylation (5hmC + 5mC) divergence be-
tween species. The modification 5-hydroxymethylcytosine (5hmC) is at low abundance when it is detected
and is probably short-lived – it is a transient state for which detection at low levels indicates actively main-
tained hypomethylation. Such active maintenance will only be observed if there is active de novo methy-
lation (otherwise the substrate for hydroxylation would quickly disappear). These dynamics likely play a
role at some point in precursors of sperm, but we do not expect to observe it in mature sperm. Knowing the
5hmC distribution in the right precursor cells, for multiple species, would be highly informative.

The ideal type of data for addressing this question would be TAB-seq data from human and mouse
sperm, or matched cell types from earlier stages of spermatogenesis. However, to our best knowledge, there
are no publicly available TAB-seq data for mammalian sperm. TAB-seq data from human and mouse ESC
showed that absolute 5hmC level is almost always less than 0.1 at individual CpG sites (Yu et al. 2012). In
human ESC, for example, only 4.0% of CpG sites have greater than 0.1 5hmC level; only 200 CpG sites
have greater than 0.5 5hmC estimated level (Yu et al. 2012). If mammalian sperm has similar distribution
of 5hmC levels, it is unlikely that the difference in 5hmC has a major contribution to the HMR expansion
phenomenon that we observe between species, as the methylation (5hmC + 5mC) levels in these regions in
species where the regions are methylated are usually quite high, e.g. above 0.6.

ChIP-seq experiments targeting 5hmC can provide qualitative evidence for the presence of this modi-
fication. Two studies used ChIP-seq to profile 5hmC distribution in human and mouse mature sperm, and
mouse spermatid and spermatocyte (Wang et al. 2015; Hammoud et al. 2014). We analyzed these data and
observed that the read count enrichment in 5hmC peaks is largely independent of regional DNA methylation
level (5hmC+5mC), especially in mature sperm. It is likely that 5hmC levels in these regions are uniformly
low. In addition, about 40% (28.2%) of promoter HMR extensions in human sperm relative to mouse sperm
overlap with mouse sperm 5hmC broad (narrow) peaks. Of these peaks, only 0.1% (14.1%) have above 5
fold read enrichment. Judging from the available information, we think that the phenomenon of promoter
HMR size divergence between human and mouse is not due to divergence in 5hmC levels.

Relative sequence substitution rate

Sequence substitution rate varies in different genomic contexts and regions of the genome. This knowledge
is the reason we used relative substitution rates in orthologous regions between two parallel lineages. The
premise is that matching orthologous pairs of intervals, and comparing their relative substitutions, likely
provides some degree of control for the sequence context (gene vs. intergenic), composition (e.g. CpG
island or not), and to a lesser degree the expression of genes (depending on the evolutionary closeness of
the species, and the function of those genes in spermatogenesis).

To examine whether HMR births located in different genomic contexts share this feature of sequence
substitution, we compared HMR births located in intergenic regions, which constitute about 1/3 of all
lineage-specific HMR births, to those located in the bodies of genes highly (RPKM>1) and lowly (RPKM≤1)
expressed in human testis tissue (Melé et al. 2015). Of the total 24 (4 pairs of lineages, 3 genomic contexts)
tests, all but one showed significantly increased RSSR in lineage-specific HMR births (permutation test
p < 0.05).

Enrichment of histone modifications

Human and mouse round spermatid histone modification H3K4me3 and H3K27me3 ChIP-seq data were
from the study by Lesch et al. (2016) (GSE68507). Human and mouse sperm H3K4me1 ChIP-seq data
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were from studies by Hammoud et al. (2014) (GSE49624) and Jung et al. (2017) (GSE79227). Reads were
mapped to respective reference genome (hg19 and mm10) with Bowtie2 (Langmead et al. 2009). Du-
plicated reads were removed using SAMtools within each sequencing library (Li et al. 2009). Fragment
lengths were estimated using the csaw Bioconductor package (Lun & Smyth 2016). For H3K4me3 and
H3K27me3, enrichment scores were calculated using deepTools (Ramı́rez et al. 2014) as the log2 ratio
of number of fragments per 10-bp bin between treatment and input after scaling by sequencing depth. For
H3K4me1, we used regional average read coverage to compare enrichment between different regions. The
mouse histone mark enrichment scores in 10-bp bins were aligned to the human hg19 coordinates using the
UCSC Genome browser utility liftOver with option -minMatch=0.5 (Hinrichs et al. 2006). Regional
average enrichment scores were computed with UCSC Genome browser utility bigWigAverageOverBed
(Kent et al. 2010).

Enrichment of transcription factor binding sites

Human transcription factor binding sites (TFBS) used in our analysis were TFBS clusters (V3) from EN-
CODE data uniformly processed by the ENCODE Analysis Working Group (Gerstein et al. 2012; Wang et
al. 2013a), downloaded from UCSC Genome Browser ENCODE Analysis Hub (hg19) (Raney et al. 2014).
We kept all TFBS that overlapped with 7-way orthologous regions and with human sperm HMRs.

For mouse transcription factor binding sites, we downloaded all narrowPeak files for Mus musculus
transcription factor ChIP-seq experiments from ENCODE covering 46 different transcription factors (mm9)
(ENCODE Project Consortium 2012). We also included mouse ESC EZH2 ChIP-seq data from studies by
Ku et al. (2008) (GSE13084) and Peng et al. (2009) (GSE18776). Reads were mapped to mouse reference
genome (mm10) with bowtie2 (Langmead et al. 2009). Duplicated reads were removed using SAMtools
within each sequencing library (Li et al. 2009). We used MACS2 to call broad peaks from each data set with
default q-value cutoff (Zhang et al. 2008). The two data set generated similar number of broad peaks (10258
vs 9861). We mapped the binding sites from mm9/mm10 to hg19 using liftOver tool (-minMatch=0.5),
and only kept binding sites that overlapped with 7-way orthologous regions and with mouse sperm HMRs.
Binding sites of the same transcription factor profiled in different cell types were pooled and collapsed.

Gene ontology analyses

Protein-coding genes with TSS located in HMRs in the sperm methylomes of all seven species comprise
the background gene list. The subset showing primate-lineage specific promoter HMR extension in human
sperm comprise the target gene list. We used GOrilla (Eden et al. 2009) to identify enriched biological
processes at false discovery rate 0.05. We further removed ontology term redundancy, and visualized the
remaining terms in semantic similarity-based scatter plots using REVIGO (Supek et al. 2011).

Primate-lineage-specific HMRs are human HMRs in 7-way orthologous genome that contain HMR birth
events annotated to the human lineage since the mouse-human common ancestor. Rodent-lineage-specific
HMRs are mouse HMRs in 7-way orthologous genome that contain HMR birth events annotated to the
mouse lineage since the mouse-human common ancestor. Overlapping HMRs between the two lineages
were removed. We established gene-HMR association by annotating an HMR to the closest gene tran-
scription start site. The gene-HMR association for mouse HMRs are established according to the mouse
reference genome assembly coordinates after converting HMRs from hg19 to mm10 with liftOver tool.
The candidate genes for gene-HMR association are orthologous protein-coding genes between human and
mouse (Ensembl75) that have gene transcription start sites located within the 7-way orthologous genome.
The gene orthologs that are associated with both a human sperm HMR and a mouse sperm HMR located
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in the 7-way orthologous genome comprise the background gene list (7293 genes). From this gene list,
we further identified the subset that are associated with primate-lineage-specific HMRs (2427 genes), and
the subset that are associated with mouse-lineage-specific HMRs (2839 genes). These two subsets have a
significant overlap (1518 genes, Fisher exact test p = 6.49 × 10−202). We used PANTHER Classification
System (Mi et al. 2016) to find overrepresented PANTHER GO-Slim biological processes associated with
the common genes.
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Ramı́rez F, Dündar F, Diehl S, Grüning BA, Manke T (2014) deepTools: a flexible platform for exploring
deep-sequencing data. Nucleic Acids Res 42:W187–W191.

33



Raney BJ, Dreszer TR, Barber GP, Clawson H, Fujita PA, Wang T, Nguyen N, Paten B, Zweig AS, Karolchik
D et al. (2014) Track data hubs enable visualization of user-defined genome-wide annotations on the
UCSC Genome Browser. Bioinformatics 30:1003–1005.

Roberts GO, Polson NG (1994) On the geometric convergence of the gibbs sampler. J Roy Stat Soc
B pp. 377–384.

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier
LW, Richards S et al. (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
genomes. Genome Res 15:1034–1050.

Siepel A, Haussler D (2004) Phylogenetic estimation of context-dependent substitution rates by maximum
likelihood. Mol Biol Evol 21:468–488.

Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, Garvin T, Kessler M, Zhou J, Smith AD (2013) A
reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics.
PloS ONE 8:e81148.
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